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Effects of nutrition, growth hormone disturbances, training, 
altitude and sleep on lung volumes

C. Gaultier*, R. Crapo**

Various modulating factors have been shown to affect
postnatal lung growth and development in humans and
other mammalian species. Therefore, normative pulmo-
nary function data should ideally indicate the environ-
mental conditions of life. This paper will review current
knowledge on the effects of nutrition, growth hormone
disturbances, training and altitude on lung volumes in
children and adults. Furthermore, the impact of sleep
states on lung volumes is considered. The present review
is a background paper of a consensus document on meas-
urements of lung volumes in humans.

Effect of nutrition on lung volumes

Our knowledge of the effect of disturbances in nutri-
tion, either inadequate nutrition or overnutrition, on lung
growth has been provided mainly by animal studies.

Inadequate nutrition and lung growth in animals

The effects of inadequate nutrition on lung volumes
have been studied in two species with differing lung matu-
rity at birth: in rats, which have immature lungs at birth;
and guinea-pigs, in which lung growth is advanced at birth.

In rats, the adverse effects of inadequate foetal nutrition
can be summarized as follows: nutritional status during
pregnancy affects foetal lung growth, with a greater effect
in late pregnancy resulting in small and hypocellular lungs

at birth [1]. Inadequate nutrition during the first 21 days of
life is associated with a decrease in cell division [2], dim-
inished alveolar formation, smaller lung volumes, and de-
creased accumulation of elastin [3, 4]. This is especially
marked with insufficient protein nutrition [3, 4]. Late post-
natal nutritional insufficiency after weaning affects cell
size, but not cell division [5]. The structure of the lung
parenchyma of rats restricted in protein during early and
late postnatal periods has been studied after refeeding for
11 weeks. All parenchymal subcomponents grew consist-
ently with normal volume and surface densities [6, 7] as
compared to controls, indicating that recovery occurs after
refeeding.

In guinea-pigs, the greatest effects of nutritional insuffi-
ciency occur prenatally. Prenatal starvation is associated
with a dramatic decrease in neonatal survival rate, and air-
space volume is significantly reduced in live neonates [8].
Despite normal postnatal feeding, residual reductions in
alveolar surface area persist. The effects of neonatal and
weaning starvation on lung growth are less marked; and
after refeeding, full recovery in lung dimensions is noted
in adulthood [9].

Vitamin D deficiency in dams and pups induces ric-
kets in young rats, and rachitic rats have low lung weight
and lung compliance [10]. These data raise the question
of the role of vitamin D deficiency in respiratory disor-
ders accompanying fat soluble vitamin malabsorption syn-
dromes.
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Inadequate nutrition and lung growth in humans

Conflicting data have been reported on the effect of
intrauterine growth retardation on lung volumes in chil-
dren. CHAN et al. [11] found that vital capacity (VC) was
normal in children of low birth weight, whereas RONA      et
al. [12] reported that forced vital capacity (FVC) was
decreased after adjustment for gestational age, parental
smoking, and social factors.

To the best of our knowledge, no functional and/or
postmortem lung volume data are available for insuffi-
ciently nourished infants during the postnatal active pe-
riod of alveolar multiplication and elastin accumulation,
i.e. the first 2 yrs of life [13–16]. We may speculate that
adverse effects will be greatest in humans when nutri-
tional insufficiency occurs during late gestation and the
first 2 yrs of life. Adverse effects of inadequate nutrition
on the development of lung function in the growing hu-
man lung may be expected to be associated with low lung
volumes and low lung compliance, and an increased ratio
of maximal expiratory flow rate to lung volume. This
speculation is supported by functional data reported in
postnatally inadequately nourished hamsters, in which
maximum expiratory flow at 50% of the VC (V 'max,50)
was half that found in control animals. However, since VC
was dramatically diminished in inadequately nourished
hamsters, when V 'max,50 was expressed in relation to VC,
it was much greater in inadequately nourished animals
than in controls [17]. Thus, when postnatal alveolarization
is suppressed, relative airflows are high. The lung growth
pattern related to nutritional insufficiency is the direct
opposite of the lung growth disorders caused by hypoxia
at high altitudes, where alveolar growth is increased [18]
and associated with disproportionate lung-to-airway size
[19].

The functional data available in humans concern inade-
quately nourished school children [20]. Thirty wasted
children, with a weight less than 80% predicted for height,
indicating acute nutritional insufficiency were studied. In
addition, 135 stunted children, who had been inadequately
nourished in the past, were studied. Peak expiratory flow
(PEF) rate was the only mechanical parameter measured.
PEF was not decreased in stunted children, indicating that
previous nutritional insufficiency does not disturb growth-
related increases of PEF, whereas PEF was decreased in
wasted children, presumably because of muscle weak-
ness. Future investigations, which compare normally and
inadequately nourished growing infants and children of
identical racial groups, should include lung function de-
velopment with regards to lung volume, lung compliance,
and relative flow rates. Furthermore, effects of refeeding
in inadequately nourished children should be investigated.

The effects of nutritional insufficiency and refeeding on
lung volumes and diaphragmatic contractile properties
were studied in severely inadequately nourished patients
with anorexia nervosa [21]. Fifteen female patients were
studied at a mean (±SD) age of 24.9 (±8.7) yrs. FVC and
forced expiratory volume in one second (FEV1) were in
the low normal range upon hospital admission, and in-
creased significantly with a nutritional support of 30 days.
Other lung volumes did not change. Diaphragmatic func-
tion was reduced initially and increased with nutrition.

Effect of nutritional changes on lung volumes

Information is scarce with regard to the potential effects
of generational changes in diet, such as migrant popula-
tions. RAVEN et al. [22] have shown that third-generation Jap-
anese-Americans have lung volume corrected for hei-ght
more comparable to Caucasians than native Japanese. MAS-
SEY and FOURNIER-MASSEY [23] studied Japanese-Ame-ricans
aged 20–80 yrs. With regards to anthropometry and pulmo-
nary function, they observed that younger Japan- ese-
Americans resembled Caucasians more, and older   Japa-
nese-Americans resembled the Japanese from Japan. How-
ever, environmental factors other than changes in diet may
occur in migrant populations to explain anthropome-tric
and pulmonary function changes.

Overnutrition and lung growth in animals

Obesity induced by a high fat diet in male newborn rats
alters biochemical properties of the lung and leads to
structural changes [24]. At 8 weeks of age, obese rats dis-
play a significant increase in fixed lung volumes and in
ratio of lung volumes to body weight and to body length3,
with enlarged alveoli compared to controls but a normal
total number of alveoli [25].

Overnutrition and lung volumes in children

Few studies have addressed the question of the effects of
obesity on pulmonary function in children. In obese chil-
dren with 135–140% and 125–205% ideal body weight
(IBW), lung volumes were normal [26, 27]. In more mark-
edly obese children (147–300% IBW), a significant reduc-
tion in expiratory reserve volume was reported [28]. In the
latter study, other lung volumes and maximal static pres-
sure were normal, but expiratory flow rates and single bre-
ath diffusing capacity were decreased [28].

Effect of growth hormone disturbances on 
lung volumes

The effects of decreased growth hormone on lung vol-
umes have been studied in children [29, 30] and adults
[31, 32]. Studies in adults have related to excessive levels
of growth hormone [32–34].

Lung volumes in growth hormone deficiency

In children who had a growth hormone deficiency, VC,
functional residual capacity (FRC), and total lung capac-
ity (TLC) were appropriate for the small statures of the
patients [29, 30]. In children studied before and after treat-
ment with human growth hormone, compensatory growth
occurred, associated with increases in TLC and VC appro-
priate for the linear growth [29, 30].

In growth hormone deficient children, appropriate lung
volumes for their small statures were associated with a
low lung elastic recoil for their age [30], high carbon mon-
oxide diffusion constants for their age [30], and closing
volume and arterial partial pressure of oxygen in relation
to their age [29].
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Patients with adult onset hypopituitarism were found to
have reduced lung volumes [31]. One study reported in-
creased lung elastic recoil [31]. However, in another study,
the pressure-volume relationship of the lung was normal
when lung volume was related to the measured TLC [32].
Inspiratory muscle strength, airflows and gas exchange
were normal [31, 32].

Lung volumes in patients with excessive growth hormone

In acromegalic adults, all lung volumes are increased in
relation to standing height [32–34]. Despite the large lung
volumes, diffusing capacity was normal [33, 34], suggest-
ing an increase in the size of alveoli [33]. However, it has
been argued that the transfer factor of the lung for carbon
monoxide (TL,CO) may not be reliable for the interpreta-
tion of the mechanisms of lung growth in cases of large
lung volumes [34]. A recent study, confirming previous
findings [32, 33] shows that pulmonary distensibility was
normal [34] and suggests that large lung volumes of ac-
romegalic patients should be achieved by an increase in
alveolar number rather than an increase in size. However,
only morphometric studies of the lungs of acromegalic
subjects could answer the question of the mechanisms of
alveolar changes, either hyperplasia or hypertrophy, relat-
ed to excessive levels of growth hormone during adult-
hood.

Animal studies, either in growing guinea-pigs [35] or
adult rats [36] treated with growth hormone, did not show
disproportionate enlargement of the lungs. Growth hor-
mone might be active only in diseases in which secreting
tumours deliver large amounts of hormones [33, 37].

Effect of training on lung volumes

The animal studies available have provided conflicting
data with regards to the effects of sustained exercise on
enhancement of lung growth [38, 39]. In humans, studies
of the effects of training on lung volumes have been per-
formed both in boys and girls, pre- and postpubertal, test-
ed either cross-sectionally or longitudinally.

Among physical activities, swimming has been the
most extensively studied and appears to be the only one
associated with a marked increase in lung volumes.

Effect of swimming on lung volumes in children and young
adults

Since the early 1960s, it has been repeatedly observed
that lung volumes are larger in young swimmers [40–51].
This has been reported in all cross-sectional and longitudi-
nal studies except one [50]. One study reported lung vol-
ume measurements at the start of swimming training in
boys aged 10 yrs. Lung volumes were already increased,
suggesting that large lungs may be a requirement for be-
coming a top swimmer [43].

All of the other studies have been performed after more
than 1 yr of training. The youngest group, training for
more than 1 yr included 7–8 year old girls [48]. In this
group, VC, FRC and TLC were significantly greater than
in an age-matched control group with similar residual vol-

ume (RV)/TLC and FRC/TLC ratios. The increase in lung
volumes was more marked in older girls, who had trained
longer [48].

Three longitudinal studies have been performed over 1
[49], 3 [40] and 5 yrs [42]. In the 1 yr study [49], the
heights of the girl swimmers' were distributed throughout
the normal range initially and 1 yr later. In contrast, the
values for VC and TLC exceeded the normal range after 1
yr in 11 out of 17 subjects. In the 3 yr study [40], both boy
and girl swimmers were taller at a given age, and the dif-
ference between groups became greater in the older chil-
dren. Swimmers also had larger TLCs as a consequence of
larger values for VC. In the 5 yr study [42], in girls with a
mean age of 11.5 yrs at the start of the study, VC
increased during continued training to a significantly
greater extent than expected with regards to the normal
growth in height. In this study, some evidence was found
for a relationship between the degree and duration of
training and the increase in VC.

A group of girl swimmers who had undergone 2.5 yrs
of intensive swimming training were the subjects of a fol-
low-up for 10 yrs [44]. When last examined 7 and 10 yrs
after the original study, all the girls had given up swim-
ming training. Interestingly, the increased values for VC
observed at the first study remained unchanged.

In addition to lung volumes, other lung function para-
meters have been studied in young swimmers. Maximal
static pressures were not significantly increased in prepu-
bertal girl swimmers [48, 49]. Chest wall measurements
were noted to be significantly larger in prepubertal girl
swimmers compared to controls. Maximal expiratory flow
rates (FEV1, maximum mid-expiratory flow rate
(MMFR)) were significantly increased both in boy and girl
swimm-ers compared to controls, to a similar extent as
were VC and TLC [40, 41, 47]. TL,CO at rest has been
shown to be increased in trained swimmers compared to
controls [46, 47], to a similar extent as was TLC. No study
has measured alveolar distensibility in child swimmers,
but normal alveolar distensibility was reported in young
adult swimmers [52]. The finding of a normal alveolar dis-
tensibility suggests that large lungs in young adult swim-
mers could be achieved by an increase in alveolar number
[52].

Effects of other sports and of enhanced physical education
in children

The effect of running training on lung volumes has
been studied during a short period (4 months) [53] and a
long period (26 months) [54] in boys starting training at
11 yrs of age. The short period of running training did not
influence TLC. In contrast, the longer period was associ-
ated with a significant increase in VC over that expected
from the age-dependent increase in body height. Recently,
a large controlled study was performed to test the impact
of an enhanced physical education programme upon FVC
in primary school children during 6 yrs of follow-up from
7–12 yrs of age [55]. Physical activity was enhanced by a
vigorous experimental programme of 5 h of additional
physical education per week, taught by a specialist. The
enhanced physical education programme had a small pos-
itive effect upon the FVC, averaging 3.2% across all 6 yrs.
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Effects of sporting activity in adults

It was reported that lung volumes were not increased in
young adult runners in contrast to observations in young
adult swimmers [52]. Lung volumes were not affected by
rowing activity in adults [56].

Effects of ventilatory muscle training in adults

Lung volumes have been studied after training pro-
grammes which were limited to the ventilatory muscles in
young adults [57, 58]. Five weeks of ventilatory muscle
strength training over the entire VC range led to only a
small increase in VC, despite more than a 50% increase in
maximal static inspiratory pressures at FRC [57]. The
small increase in VC could be explained by lung stiffness
at large volumes. Another study showed that normal sub-
jects can increase their VC and TLC over a 6 week train-
ing period by performing multiple daily sustained
inhalations to TLC [58]. The increase in lung volumes
could be attri-buted to greater maximal shortening of the
inspiratory muscles [58]. Such a mechanism could explain
the in-crease in VC in breathholding divers [59].

Effect of altitude on lung volumes

No consistent differences in lung volumes (TLC, VC,
FRC and RV) attributable solely to altitude have been
uncovered in studies of residents at altitudes from sea
level to 1,800 m [60–62]. Increases in lung volumes are,
however, a part of the adaptive response to high altitudes
(at Š3,000 m). The effects of altitudes between 1,800 and
3,000 m on lung volumes are unknown.

Hypoxia occurs at high altitudes because of the reduced
partial pressure of oxygen in the atmosphere. The adaptive
mechanisms used to compensate for this hypoxia are
dependent on the altitude, on whether the exposure to high
altitude is temporary or prolonged, and on whether the
individual acclimatized during growth. Pulmonary adap-
tations in residents at high altitudes classically include
hyperventilation, increases in TL,CO, polycythaemia, and
increases in lung volumes. Detailed reviews of all the
adaptations to high altitude are available [63–66].

Studies consistently show larger measured lung vol-
umes in natives of high altitudes, which are not explained
by race or body size [63, 65, 67–69]. The most commonly
reported volume in these studies is VC, but studies also
show increases in TLC, FRC and RV in high altitude
natives.

The magnitude of the increases in lung volume is hard
to quantify because of differences in body size and race of
the subjects and the variability between studies. Average
increases in TLC in highland natives compared to lowland
natives range 7–15%. Compared to the changes in TLC,
the increases in VC are smaller and those of FRC and RV
larger.

In residents of high altitude, the increase in lung vol-
ume varies depending upon when the acclimatization oc-
curred and the duration of the exposure to high altitude.
Increase in VC are about the same for individuals who
acclimatized and lived at high altitude during growth

regardless of whether or not they were born at high alti-
tude [63, 65, 70]. Lowlanders who acclimatize to high al-
titude as adults have smaller VCs than highland natives.

High altitude children aged >5 yrs had larger VCs than
lowlanders [70, 71]. The differences between VCs of high-
landers and lowlanders increased until 21 yrs of age [70].
VC did not appear to change if the stay at high altitude
was less than 3 yrs [70]. This information suggests that
the larger lung volumes in native highlanders is acquired
as a result of exposure to hypoxia during growth, rather
than being genetically determined. One morphometric
study of the lungs of five native highlanders found an
increase in the number and size of the alveoli in compari-
son with sea level controls [72]. The larger lung volumes
seen in high altitude natives are not accompanied by in-
creased rates of airflow [16].

No measurement of lung volume is available in infants
born at high altitude. MORTOLA et al. [73] reported increa-sed
compliance of the respiratory system (Crs) in healthy full-
term infants born in La Paz, Bolivia. This increase was not
found in an ethnically similar group of newborns living at
low altitude. This increased in Crs, reflecting changes in
lung structural and mechanical properties found at birth
in populations living at high altitude, is probably not a
genetic characteristic, and is most likely the result of foetal
hypoxia.

Studies in animals support the hypothesis that changes
in lung volumes are acquired [65, 74]. In a study of the
effect of high altitude on beagles, JOHNSON et al. [74] point
out that the increased lung volumes in animals raised at
high altitudes are associated with an increase in the fine
septal tissue and the internal surface area of the lung
(Johnson, 1992 personal communication). Studies of new-
born rats exposed to hypoxia found an increase in the
number and size of alveoli [17]. Thus, the larger lung vol-
umes seen in high altitude natives appear to be the result
of accelerated and/or prolonged lung growth in response
to a hypoxaemic stimulus at an early age rather than over-
inflation (stretching) of the lung. The finding that flows
are not increased [16] and the information that only the
fine septal tissues increased in beagles acclimatized dur-
ing growth [74] are consistent with dysynaptic lung
growth,  in which the airways do not participate in the
adaptation to altitude.

Changes in chest configuration are not as well-docu-
mented as the changes in lung volume. Peruvians native to
high altitude regions are described as having larger and
more prominent chests, with larger chest circumferences
than Peruvian lowlanders [65]. These findings are, how-
ever, not consistent across high altitude populations and
are specifically not seen in Asiatic highlanders [65]. JOHN-
SON et al. [74] found beagles raised in Leadville, CO, USA
had larger lung volumes, at any given transpulmonary
pressure, than beagles raised at lower altitudes, but saw no
change in chest configuration. The larger lung volumes
were accommodated by a lower diaphragm.

The findings concerning changes in lung volumes asso-
ciated with acute exposure to high altitudes are variable. A
reasonable summary is that, on average, VC decreases
(about 200 mL in adults) and TLC and RV increase with
the initial exposure to altitude but return to baseline values
within a month [63, 75, 76].
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Effects of sleep on lung volumes

The only comparative measurements of lung volumes
during wakefulness and sleep concern FRC in supine ad-
ults and newborns.

Data available in adults

In eight healthy male adults (aged 21–41 yrs), FRC has
been measured using the helium dilution technique. FRC
fell significantly from wakefulness to non-rapid eye
move-ment (NREM) (stage 3/4) and rapid eye movement
(REM) sleep by 9.9 and 10%, respectively. No significant
difference was observed between NREM (stage 3/4) and
REM sleep [77].

In five healthy male adults, aged 23–33 yrs, FRC has
been measured using a horizontal body plethysmograph
[78]. FRC fell significantly from wakefulness to all states
of sleep. FRC fell by an average of 13–15% in NREM,
stage 2, 3/4 and 16.5% in REM sleep. In REM sleep, the
fall in FRC was nonsignificantly different from that in
NREM sleep, in contrast to that observed in asthmatic
adult patients in whom FRC significantly decreased [78].

Data available in newborns

The potential influence of active (REM) versus quiet
(NREM) sleep on the end-expiratory lung volume, FRC,
remains controversial. Two studies have assessed changes
in FRC in active as compared to quiet sleep, using induc-
tance plethysmography to detect changes in anteroposte-
rior diameters both of rib cage and abdomen in preterm
infants [79], and alterations in the baseline signal from a
respiratory jacket in term infants [80]. In both studies,
FRC was found to fall slightly during the transition from
quiet to active sleep, although in the healthy term infants
FRC recovered to previous levels within 20–40 s [80].

Two studies using a body plethysmograph have repor-
ted a significant fall in FRC in active compared to quiet
sleep in healthy full-term newborns [81, 82]. The mean
fall in FRC was 31% in six infants and 12% in eight.
There may be methodological rather than purely physio-
logical explanations for these differences, including lack
of support of the upper airways [81, 82]. Three studies
have measured FRC using the helium dilution technique
during active and quiet sleep assessed by neurophysio-
logical criteria [83–86]. In healthy full-term newborns, no
significant changes in FRC were observed, related either
to sleep state or regularity of respiration; however, no
attempt was made to measure rib cage and abdominal
motion [83].

Two studies have concerned both preterm and full-term
newborns, and showed no change in FRC in relation to
change in sleep state, but a fall in FRC only when rib cage
and abdominal motion were 180° out of phase, regardless
of sleep state [84, 85].

Discrepancies between these different studies may be
related to the method of measurement. Using body ple-
thysmography, repeat measurements of FRC can be ac-
hieved over much shorter time periods than when using
helium to wash out the lungs between repeat measure-
ments. If there is a rapid recovery in FRC following any

reductions during active sleep [80], any sleep-related chan-
ges in FRC may be detected by plethysmography but mis-
sed using helium dilution techniques. However, as stated
above, the magnitude of changes during plethysmographic
measurements may have been overestimated due to poor
equilibration of airway pressures during airway occlusion
in active sleep [81].

For routine practice, it is recommended that functional
residual capacity be measured during quiet sleep, when
breathing is regular and when rib cage and abdominal mo-
tion are in phase [86]. In preterm infants and neonates,
who manifest periods of paradoxical rib cage motion dur-
ing quiet sleep and a large proportion of active sleep, mea-
surement of functional residual capacity when rib cage
and abdominal movements are in phase is difficult.
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